Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Decision tree improvement method for imbalanced data
WANG Wei, XIE Yaobin, YIN Qing
Journal of Computer Applications    2019, 39 (3): 623-628.   DOI: 10.11772/j.issn.1001-9081.2018071513
Abstract1412)      PDF (1053KB)(841)       Save

Focusing on the problem that serious imbalance between abnormal data and normal data in anomaly detection will lead to performance degradation of decision tree, three improved methods for C4.5 decision tree were proposed, which are C4.5+δ, UDE (Uniform Distribution Entropy) and IDEF (Improved Distribution Entropy Function). Firstly, it was deduced that the attribute selection criterion of C4.5 tends to choose the ones with imbalanced splitting. Secondly, why imbalanced splitting decreases the accuracy of anomaly (minority) detection was analyzed. Thirdly, the attribute selection criterion-information gain ratio of C4.5 was improved by introducing relaxation factor and uniform distribution entropy, or substituting distribution entropy function. Finally, three improved decision trees were verified on WEKA platform and NSL-KDD dataset. Experimental results show that three proposed improved methods can increase the accuracy of anomaly detection. Compared with C4.5, the accuracies of C4.5+7, UDE and IDEF on KDDTest-21 dataset are improved by 3.16, 3.02 and 3.12 percentage points respectively, which are better than the methods using Rényi entropy or Tsallis entropy as splitting criterion. Furthermore, using improved decision trees to detect anomalies in the industrial control system can not only improve the recall ratio of anomalies, but also reduce false positive rate.

Reference | Related Articles | Metrics